Distinct but conserved functions for two chloroplastic NADP-malic enzyme isoforms in C3 and C4 Flaveria species.

نویسندگان

  • Lien B Lai
  • Lin Wang
  • Timothy M Nelson
چکیده

In the most common C4 pathway for carbon fixation, an NADP-malic enzyme (NADP-ME) decarboxylates malate in the chloroplasts of bundle sheath cells. Isoforms of plastidic NADP-ME are encoded by two genes in all species of Flaveria, including C3, C3-C4 intermediate, and C4 types. However, only one of these genes, ChlMe1, encodes the enzyme that functions in the C4 pathway. We compared the expression patterns of the ChlMe1 and ChlMe2 genes in developing leaves of Flaveria pringlei (C3) and Flaveria trinervia (C4) and in transgenic Flaveria bidentis (C4). ChlMe1 expression in C4 species increases in leaves with high C4 pathway activity. In the C3 species F. pringlei, ChlMe1 expression is transient and limited to early leaf development. In contrast, ChlMe2 is expressed in C3 and C4 species concurrent with stages in chloroplast biogenesis. Because previous studies suggest that NADP-ME activities generally reflect the level of its mRNA abundance, we discuss possible roles of ChlMe1 and ChlMe2 based on these expression patterns.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antisense Reduction of NADP-Malic Enzyme in Flaveria bidentis Reduces Flow of CO2 through the C4 Cycle [W][OA]

An antisense construct targeting the C4 isoform of NADP-malic enzyme (ME), the primary enzyme decarboxylating malate in bundle sheath cells to supply CO2 to Rubisco, was used to transform the dicot Flaveria bidentis. Transgenic plants (a-NADP-ME) exhibited a 34% to 75% reduction in NADP-ME activity relative to the wild type with no visible growth phenotype. We characterized the effect of reduci...

متن کامل

Photosynthetic Characteristics of C3-C4 Intermediate Flaveria

Four species of the genus Flaveria, namely F. anomala, F. liaris, F. pubescens, and F. ramosissima, were identified as intermediate C3-C4 plants based on leaf anatomy, photosynthetic CO2 compensation point, 02 inhibition of photosynthesis, and activities of C4 enzymes. F. anomala and F. rawosissina exhibit a distinct Kranz-like leaf anatomy, similar to that of the C4 species F. trinervia while ...

متن کامل

Primary structure of the maize NADP-dependent malic enzyme.

Chloroplast-localized NADP-dependent malic enzyme (EC 1.1.1.40) (NADP-ME) provides a key activity for the carbon 4 fixation pathway. In maize, nuclear encoded NADP-ME is synthesized in the cytoplasm as a precursor with a transit peptide that is removed upon transport into the chloroplast stroma. We present here the complete nucleotide sequence for a 2184-base pair full-length maize NADP-ME cDNA...

متن کامل

CO2 Exchange, Cytogenetics, and Leaf Anatomy of Hybrids between Photosynthetically Distinct Flaveria Species1

Hybrids between the C4-like species, Flaveria brownii, A. M. Powell and the C3-C4 intermediate species Flaveria linearis Lag., Flaveria floridana Johnston, and Flaveria opposithfoIIa (DC.) Rydb. exhibited bivalent chromosome pairing during meiosis and stainability of pollen was high, ranging from 51 to 95%. An F2 population produced from an F. brownil x F. linearls F1 hybrid, exhibited bivalent...

متن کامل

Degree of C(4) Photosynthesis in C(4) and C(3)-C(4)Flaveria Species and Their Hybrids : I. CO(2) Assimilation and Metabolism and Activities of Phosphoenolpyruvate Carboxylase and NADP-Malic Enzyme.

The degree of C(4) photosynthesis was assessed in four hybrids among C(4), C(4)-like, and C(3)-C(4) species in the genus Flaveria using (14)C labeling, CO(2) exchange, (13)C discrimination, and C(4) enzyme activities. The hybrids incorporated from 57 to 88% of the (14)C assimilated in a 10-s exposure into C(4) acids compared with 26% for the C(3)-C(4) species Flaveria linearis, 91% for the C(4)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 128 1  شماره 

صفحات  -

تاریخ انتشار 2002